Важливість і значення поліморфізму генів при прееклампсії

Автор(и)

  • P. N. Veropotvelyan ОКЗ«Міжобласний центр медичної генетики і пренатальної діагностики», м. Кривий Ріг, Україна
  • I. S. Tsehmistrenko ОКЗ«Міжобласний центр медичної генетики і пренатальної діагностики», м. Кривий Ріг, Україна
  • N. P. Veropotvelyan Перинатальний центр, м. Київ, Україна
  • N. S. Rusak ОКЗ«Міжобласний центр медичної генетики і пренатальної діагностики», м. Кривий Ріг, Україна
  • P. S. Goruk ОКЗ«Міжобласний центр медичної генетики і пренатальної діагностики», м. Кривий Ріг, Україна

DOI:

https://doi.org/10.15574/10.15574/HW.2016.114.45

Ключові слова:

прееклампсія, окиснювальний стрес, гени системи детоксикації

Анотація

У статті приведений систематичний огляд даних про взаємозв’язок між поліморфізмами генів системи детоксикації та розвитком прееклампсії (ПЕ). Представлено основні гени системи детоксикації (GSTPI, GSTМI, GSTТI, GРХI, ЕРНХI, SOD-2, SOD-3, CYPIAL, MTHЕR, MTR) та їхні функції. Становить інтерес можливість розрахунку індивідуального ризику розвитку ПЕ на підставі даних про наявність сполучень різних поліморфізмів у генотипі жінки. Питання щодо ранньої діагностики ПЕ залишається дискутабельним і до кінця не вивченим. Необхідно проводити подальше поглиблене розширене дослідження даної проблеми.

Посилання

Also-Rallo E, Lopez-Quesada E, Urreizti R, Vilaseca MA, Lailla JM, Balcells S, Grinberg D. 2005. Polymorphisms of genes involved in homocysteine metabolism in preeclampsia and in uncomplicated pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol. 120(1):45–52.

Das B, Saha-Roy S, Das Gupta A, Lahiri TK, Das HN. 2012. Assessment of placental oxidative stress in pre-eclampsia. J. Obstet. Gynaecol. India. 62(1):39–42.

Zusterzeel PL, te Morsche RH, Raijmakers MT, Roes EM, Peters WH, Steegers-Theunissen RP, Steegers EA. 2005. N-acetyl-transferase phenotype and risk for preeclampsia. Am. J. Obstet. Gynecol. 193(3;1):797–802.

Jobe SO, Ramadoss J, Koch JM, Jiang Y, Zheng J, Magness RR. 2010. Estradiol-17в and its cytochrome P450-and catechol-O- methyltransferase-derived metabolites stimulate proliferation in uterine artery endothelial cells: role of estrogen receptor-б versus estrogen receptor-в. Hypertension 55(4):1005–11. https://doi.org/10.1161/HYPERTENSIONAHA.109.146399; PMid:20212268 PMCid:PMC2876348

Laraqui A, Allami A, Carrie A, Raisonnier A, Coiffard AS, Benkouka F et al. 2007. Relation between plasma homocysteine, gene polymorphisms of homocysteine metabolism-related enzymes, and angiographically proven coronary artery disease. Eur. J. Intern. Med. 18(6):474–83.

Murakami S, Matsubara N, Saitoh M, Miyakaw S, Shoji M, Kubo T. 2001. The relation between plasma homocysteine concentration and methylenetetrahydrofolate reductase gene polymorphism in pregnant women. J. Obstet. Gynaecol. Res. 27(6):349–52.

Al-Jameil N, Aziz Khan F, Fareed M, Tabassum H. 2014. A brief overview of preeclampsia. J Clin Med Res. 6(1):1–7.

Wu X, Yang K, Tang X, Sa Y, Zhou R, Liu J et al. 2015. Folate metabolism gene polymorphisms MTHFR C677T and A1298C and risk for preeclampsia: a meta-analysis. J. Assist. Reprod. Genet. 32(5):797–805. https://doi.org/10.1007/s10815-014-0408-8

Li X, Luo YL, Zhang QH, Mao C, Wang XW, Liu S, Chen Q. 2014. Methylenetetrahydrofolate reductase gene C677T, A1298C polymorphisms and pre-eclampsia risk: a meta-analysis. Mol. Biol. Rep. 41(8):5435–48. https://doi.org/10.1007/s11033-014-3415-z

Salimi S, Saravani M, Yaghmaei M, Fazlali Z, Mokhtari M, Naghavi A, Farajian-Mashhadi F. 2015. The early-onset preeclampsia is associated with MTHFR and FVL polymorphisms. Arch. Gynecol. Obstet. 291(6):1303–12.

Kan NE, Bednyagin LA, Tyutyunnik VL et al. 2016. The significance of polymorphisms genes of detoxification system in preeclampsia. Obstetrics and gynecology 2:8–13. https://doi.org/10.18565/aig.2016.2.8-13

Perez-Sepulveda A, Espana-Perrot PP, Fernandez XB, Ahumada V, Bustos V, Arraztoa JA et al. 2013. Levels of key enzymes of methionine-homocysteine metabolism in preeclampsia. Biomed. Res. Int. 2013:8.

Seremak-Mrozikiewicz A, Bogacz A, Bartkowiak-Wieczorek J, Wolski H, Czerny B, Gorska-Paukszta M, Drews K. 2015. The importance of MTHFR, MTR, MTRR and CSE expression levels in Caucasian women with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 188(5):113–7.

Hong YC, Lee KH, Yi CH, Ha EH, Christiani DC. 2002. Genetic susceptibility of term pregnant women to oxidative damage. Toxicol. Lett. 129(3):255–62.

Procopciuc LM, Caracostea G, Nemeti G, Drugan C, Olteanu I, Stamatian FJ. 2012. The Ala-9Val (Mn-SOD) and Arg213Gly (EC-SOD) polymorphisms in the pathogenesis of preeclampsia in Romanian women: association with the severity and outcome of preeclampsia. Matern. Fetal Neonatal Med. 25(7):895–900. https://doi.org/10.3109/14767058.2011.599078; PMid:22432908

Rosta K, Molvarec A, Enzsoly A, Nagy B, Rуnai Z, Fekete A et al. 2009. Association of extracellular superoxide dismutase (SOD3) Ala40Thr gene polymorphism with pre-eclampsia complicated by severe fetal growth restriction. Eur. J. Obstet. Gynecol. Reprod. Biol. 142(2):134–8.

James PR, Nelson-Piercy C. 2004. Management of hypertension before, during and after pregnancy. Heart. 90(12):1499-504. https://doi.org/10.1136/hrt.2004.035444; PMid:15547046 PMCid:PMC1768605

Redman CW, Sargent IL. 2009. Placental stress and pre-eclampsia: a revised view. Placenta. 30(Suppl.А):38–42.

Cronqvist T, Salje K, Familari M, Guller S, Schneider H, Gardiner C et al. 2014. Syncytiotrophoblast vesicles show altered micro-RNA and haemoglobin content after ex-vivo perfusion of placentas with haemoglobin to mimic preeclampsia. PLoS One. 9(2):e90020.

Hansson SR, Naav A, Erlandsson L. 2015. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Front. Physiol. 5:516.

Walsh SW. 1998. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin. Reprod. Endocrinol. 16(1):93–104.

The National Center for Biotechnology Information Gene Database. http: //www. ncbi. nlm. nih.gov/gene

OMIM: An Online Catalog of Human Genes and Genetic Disorders. http://www.omim.org

Zusterzeel PL, Peters WH, Burton GJ, Visser W, Roelofs HM, Steegers EA. 2007. Susceptibility to pre-eclampsia is associated with multiple genetic polymorphisms in maternal biotransformation enzymes. Gynecol. Obstet. Invest. 63(4):209–13.

Canto P, Canto-Cetina T, Juarez-Velazquez R, Rosas-vargas H, Rangel-Villalobos HH, Canizales-Quinteros S et al. 2008. Methylenetetrahydrofolate reductase C677T and glutathione S-transferase P1 A313G are associated with a reduced risk of preeclampsia in Maya-Mestizo women. Hypertens. Res. 31(5):1015–9.

Gebhardt GS, Peters WH, Hillermann R, Odendaal HJ, Carelse-Tofa K, Raijmakers MT, Steegers EA. 2004. Maternal and fetal single nucleotide polymorphisms in the epoxide hydrolase and gluthatione S-transferase P1 genes are not associated with pre-eclampsia in the Coloured population of the Western Cape, South Africa. J. Obstet. Gynaecol. 24(8):866–72.

Coral-Vбzquez RM, Romero Arauz JF, Canizales-Quinteros S, Coronel A, Valencia EY, Hernбndez Rivera J et al. 2013. Analysis of polymorphisms and haplotypes in genes associated with vascular tone, hypertension and oxidative stress in Mexican-Mestizo women with severe preeclampsia. Clin. Biochem. 46(7–8):627–32.

Norppa H. 2003. Genetic susceptibility, biomarker respones, and cancer. Mutat. Res. 544(2–3):339–48.

Sandoval-Carrillo A, Aguilar-Duran M, Vбzquez-Alaniz F, Castellanos-Juбrez FX, Barraza-Salas M, Sierra-Campos E et al. 2014. Polymorphisms in the GSTT1 and GSTM1 genes are associated with increased risk of preeclampsia in the Mexican mestizo population. Genet. Mol. Res. 13(1):2160–5.

Zhang J, Masciocchi M, Lewis D, Sun W, Liu A, Wang Y. 2008. Placental anti-oxidant gene polymorphisms, enzyme activity, and oxidative stress in preeclampsia. Placenta. 29(5):439–43. https://doi.org/10.1016/j.placenta.2008.02.012; PMid:18387669 PMCid:PMC2570102

Atalay MA, Ozerkan K, Karkucak M, Yakut T, Atik Y, Develioglu OH. 2012. Polymorphisms in angiotensin-converting enzyme and glutathione s-transferase genes in Turkish population and risk for preeclampsia. Clin. Exp. Obstet. Gynecol. 39(4):466–9.

Kim YN, Kim HK, Warda M, Kim N, Park WS, Prince Adel B et al. 2007. Toward a better understanding of preeclampsia: Comparative proteomic analysis of preeclamptic placentas. Proteomics Clin. Appl. 1(12):1625–36. https://doi.org/10.1002/prca.200700034

Mistry HD, Gill CA, Kurlak LO, Seed PT, Hesketh JE, Meplan C et al. 2015. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks gestation in nulliparous women who subsequently develop preeclampsia. Free Radic. Biol. Med. 78:147-55. https://doi.org/10.1016/j.freeradbiomed.2014.10.580; PMid:25463281 PMCid:PMC4291148

Sukhikh GT, Krasny AM, Kahn NE et al. 2015. Apoptosis and gene expression of antioxidant enzymes in the placenta in preeclampsia. Obstetrics and gynecology 3:11–5.

Mistry HD, Kurlak LO, Williams PJ, Ramsay MM, Symonds ME, Broughton Pipkin F. 2010. Differential expression and distribution of placental glutathione peroxidases 1, 3 and 4 in normal and preeclamptic pregnancy. Placenta 31(5):401–8. https://doi.org/10.1016/j.placenta.2010.02.011; PMid:20303587

Roland-Zejly L, Moisan V, St-Pierre I, Bilodeau JF. 2011. Altered placental glutathione peroxidase mRNA expression in preeclampsia according to the presence or absence of labor. Placenta 32(2):161–7. https://doi.org/10.1016/j.placenta.2010.11.005; PMid:21145108

Mistry HD, Wilson V, Ramsay MM, Symonds ME, Broughton Pipkin F. 2008. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 52(5):881–8. https://doi.org/10.1161/HYPERTENSIONAHA.108.116103; PMid:18852388

Yan J, Xu X. 2012. Relationships between concentrations of free fatty acid in serum and oxidative-damage levels in placental mitochondria and preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 47(6):412–7.

Groten T, Schleussner E, Lehmann T, Reister F, Holzer B, Danso KA, Zeillinger R. 2014. eNOSI4 and EPHX1 polymorphisms affect maternal susceptibility to preeclampsia: analysis of five polymorphisms predisposing to cardiovascular disease in 279 Caucasian and 241 African women. Arch. Gynecol. Obstet. 289(3):581–93. https://doi.org/10.1007/s00404-013-2991-9

Laasanen J, Romppanen EL, Hiltunen M, Heli-salmi S, Mannermaa A, Punnonen K, Heinonen S. 2002. Two exonic single nucleotide polymorphisms in the microsomal epoxide hydrolase gene are jointly associated with preeclampsia. Eur. J. Hum. Genet. 10(9):569–73.

Pinarbasi E, Percin FE, Yilmaz M, Akgun E, Cetin M, Cetin A. 2007. Association of microsomal epoxide hydrolase gene polymorphism and pre-eclampsia in Turkish women. J. Obstet. Gynaecol. Res. 33(1):32–7.

Wang Y, Walsh SW. 2001. Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta. 22(2–3):206–12.

https://www.obs-gyn.ox.ac.uk

Lissette C, Carlos Prada E. 2014, October 10. Sбnchez-Aranguren. Endothelial dysfunction and preeclampsia: role of oxidative stress. Front. Physiol.

Номер

Розділ

Акушерство